The main role of human thymine-DNA glycosylase is removal of thymine produced by deamination of 5-methylcytosine and not removal of ethenocytosine.

نویسندگان

  • Mika Abu
  • Timothy R Waters
چکیده

Metabolites of vinyl chloride react with cytosine in DNA to form 3,N(4)-ethenocytosine. Recent studies suggest that ethenocytosine is repaired by the base excision repair pathway with the ethenobase being removed by thymine-DNA glycosylase. Here single turnover kinetics have been used to compare the excision of ethenocytosine by thymine-DNA glycosylase with the excision of thymine. The effect of flanking DNA sequence on the excision of ethenocytosine was also investigated. The 34-bp duplexes studied here fall into three categories. Ethenocytosine base-paired with guanine within a CpG site (i.e. CpG.(epsilon)C-DNA) was by far the best substrate having a specificity constant (k(2)/K(d)) of 25.1 x 10(6) m(-1) s(-1). The next best substrates were DNA duplexes containing TpG.(epsilon)C, GpG.(epsilon)C, and CpG.T. These had specificity constants 45-130 times smaller than CpG.(epsilon)C-DNA. The worst substrates were DNA duplexes containing ApG.(epsilon)C and TpG.T, which had specificity constants, respectively, 1,600 and 7,400 times lower than CpG.(epsilon)C-DNA. DNA containing ethenocytosine was bound much more tightly than DNA containing a G.T mismatch. This is probably because thymine-DNA glycosylase can flip out ethenocytosine from a G.(epsilon)C base pair more easily than it can flip out thymine from a G.T mismatch. Because thymine-DNA glycosylase has a larger specificity constant for the removal of ethenocytosine, it has been suggested its primary purpose is to deal with ethenocytosine. However, these results showing that thymine-DNA glycosylase has a strong sequence preference for CpG sites in the excision of both thymine and ethenocytosine suggest that the main role of thymine-DNA glycosylase in vivo is the removal of thymine produced by deamination of 5-methylcytosine at CpG sites.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The versatile thymine DNA-glycosylase: a comparative characterization of the human, Drosophila and fission yeast orthologs.

Human thymine-DNA glycosylase (TDG) is well known to excise thymine and uracil from G.T and G.U mismatches, respectively, and was therefore proposed to play a central role in the cellular defense against genetic mutation through spontaneous deamination of 5-methylcytosine and cytosine. In this study, we characterized two newly discovered orthologs of TDG, the Drosophila melanogaster Thd1p and t...

متن کامل

Deamination of 5-Methylcytosine Residues in Mammalian Cells

DNA demethylation in mammalia occurs after fertilization and during embryogenesis and accompanies cell aging and cancer transformation. With the help of the primer extension reaction, MALDI MS and DNA cleavage by thymine DNA glycosylase deamination of 5-methylcytosine residues has been shown to take place when the model methylated DNA duplexes are treated with nuclear extracts from the cell lin...

متن کامل

Separating substrate recognition from base hydrolysis in human thymine DNA glycosylase by mutational analysis.

Human thymine DNA glycosylase (TDG) was discovered as an enzyme that can initiate base excision repair at sites of 5-methylcytosine- or cytosine deamination in DNA by its ability to release thymine or uracil from G.T and G.U mismatches. Crystal structure analysis of an Escherichia coli homologue identified conserved amino acid residues that are critical for its substrate recognition/interaction...

متن کامل

Association of Dnmt3a and thymine DNA glycosylase links DNA methylation with base-excision repair

While methylcytosines serve as the fifth base encoding epigenetic information, they are also a dangerous endogenous mutagen due to their intrinsic instability. Methylcytosine undergoes spontaneous deamination, at a rate much higher than cytosine, to generate thymine. In mammals, two repair enzymes, thymine DNA glycosylase (TDG) and methyl-CpG binding domain 4 (MBD4), have evolved to counteract ...

متن کامل

Excision of 5-hydroxymethyluracil and 5-carboxylcytosine by the thymine DNA glycosylase domain: its structural basis and implications for active DNA demethylation

The mammalian thymine DNA glycosylase (TDG) is implicated in active DNA demethylation via the base excision repair pathway. TDG excises the mismatched base from G:X mismatches, where X is uracil, thymine or 5-hydroxymethyluracil (5hmU). These are, respectively, the deamination products of cytosine, 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC). In addition, TDG excises the Tet prote...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 278 10  شماره 

صفحات  -

تاریخ انتشار 2003